(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
0(#) → #
+(#, x) → x
+(x, #) → x
+(0(x), 0(y)) → 0(+(x, y))
+(0(x), 1(y)) → 1(+(x, y))
+(1(x), 0(y)) → 1(+(x, y))
+(1(x), 1(y)) → 0(+(+(x, y), 1(#)))
+(+(x, y), z) → +(x, +(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +(log'(x), 1(#)), #)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
0(#) → #
+'(#, x) → x
+'(x, #) → x
+'(0(x), 0(y)) → 0(+'(x, y))
+'(0(x), 1(y)) → 1(+'(x, y))
+'(1(x), 0(y)) → 1(+'(x, y))
+'(1(x), 1(y)) → 0(+'(+'(x, y), 1(#)))
+'(+'(x, y), z) → +'(x, +'(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +'(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +'(log'(x), 1(#)), #)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
0(#) → #
+'(#, x) → x
+'(x, #) → x
+'(0(x), 0(y)) → 0(+'(x, y))
+'(0(x), 1(y)) → 1(+'(x, y))
+'(1(x), 0(y)) → 1(+'(x, y))
+'(1(x), 1(y)) → 0(+'(+'(x, y), 1(#)))
+'(+'(x, y), z) → +'(x, +'(y, z))
-(#, x) → #
-(x, #) → x
-(0(x), 0(y)) → 0(-(x, y))
-(0(x), 1(y)) → 1(-(-(x, y), 1(#)))
-(1(x), 0(y)) → 1(-(x, y))
-(1(x), 1(y)) → 0(-(x, y))
not(true) → false
not(false) → true
if(true, x, y) → x
if(false, x, y) → y
ge(0(x), 0(y)) → ge(x, y)
ge(0(x), 1(y)) → not(ge(y, x))
ge(1(x), 0(y)) → ge(x, y)
ge(1(x), 1(y)) → ge(x, y)
ge(x, #) → true
ge(#, 0(x)) → ge(#, x)
ge(#, 1(x)) → false
log(x) → -(log'(x), 1(#))
log'(#) → #
log'(1(x)) → +'(log'(x), 1(#))
log'(0(x)) → if(ge(x, 1(#)), +'(log'(x), 1(#)), #)
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
- :: #:1 → #:1 → #:1
not :: true:false → true:false
true :: true:false
false :: true:false
if :: true:false → #:1 → #:1 → #:1
ge :: #:1 → #:1 → true:false
log :: #:1 → #:1
log' :: #:1 → #:1
hole_#:11_2 :: #:1
hole_true:false2_2 :: true:false
gen_#:13_2 :: Nat → #:1
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+',
-,
ge,
log'They will be analysed ascendingly in the following order:
+' < log'
ge < log'
(6) Obligation:
TRS:
Rules:
0(
#) →
#+'(
#,
x) →
x+'(
x,
#) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
-(
#,
x) →
#-(
x,
#) →
x-(
0(
x),
0(
y)) →
0(
-(
x,
y))
-(
0(
x),
1(
y)) →
1(
-(
-(
x,
y),
1(
#)))
-(
1(
x),
0(
y)) →
1(
-(
x,
y))
-(
1(
x),
1(
y)) →
0(
-(
x,
y))
not(
true) →
falsenot(
false) →
trueif(
true,
x,
y) →
xif(
false,
x,
y) →
yge(
0(
x),
0(
y)) →
ge(
x,
y)
ge(
0(
x),
1(
y)) →
not(
ge(
y,
x))
ge(
1(
x),
0(
y)) →
ge(
x,
y)
ge(
1(
x),
1(
y)) →
ge(
x,
y)
ge(
x,
#) →
truege(
#,
0(
x)) →
ge(
#,
x)
ge(
#,
1(
x)) →
falselog(
x) →
-(
log'(
x),
1(
#))
log'(
#) →
#log'(
1(
x)) →
+'(
log'(
x),
1(
#))
log'(
0(
x)) →
if(
ge(
x,
1(
#)),
+'(
log'(
x),
1(
#)),
#)
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
- :: #:1 → #:1 → #:1
not :: true:false → true:false
true :: true:false
false :: true:false
if :: true:false → #:1 → #:1 → #:1
ge :: #:1 → #:1 → true:false
log :: #:1 → #:1
log' :: #:1 → #:1
hole_#:11_2 :: #:1
hole_true:false2_2 :: true:false
gen_#:13_2 :: Nat → #:1
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
The following defined symbols remain to be analysed:
+', -, ge, log'
They will be analysed ascendingly in the following order:
+' < log'
ge < log'
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_#:13_2(
n5_2),
gen_#:13_2(
n5_2)) →
*4_2, rt ∈ Ω(n5
2)
Induction Base:
+'(gen_#:13_2(0), gen_#:13_2(0))
Induction Step:
+'(gen_#:13_2(+(n5_2, 1)), gen_#:13_2(+(n5_2, 1))) →RΩ(1)
0(+'(+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)), 1(#))) →IH
0(+'(*4_2, 1(#)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
0(
#) →
#+'(
#,
x) →
x+'(
x,
#) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
-(
#,
x) →
#-(
x,
#) →
x-(
0(
x),
0(
y)) →
0(
-(
x,
y))
-(
0(
x),
1(
y)) →
1(
-(
-(
x,
y),
1(
#)))
-(
1(
x),
0(
y)) →
1(
-(
x,
y))
-(
1(
x),
1(
y)) →
0(
-(
x,
y))
not(
true) →
falsenot(
false) →
trueif(
true,
x,
y) →
xif(
false,
x,
y) →
yge(
0(
x),
0(
y)) →
ge(
x,
y)
ge(
0(
x),
1(
y)) →
not(
ge(
y,
x))
ge(
1(
x),
0(
y)) →
ge(
x,
y)
ge(
1(
x),
1(
y)) →
ge(
x,
y)
ge(
x,
#) →
truege(
#,
0(
x)) →
ge(
#,
x)
ge(
#,
1(
x)) →
falselog(
x) →
-(
log'(
x),
1(
#))
log'(
#) →
#log'(
1(
x)) →
+'(
log'(
x),
1(
#))
log'(
0(
x)) →
if(
ge(
x,
1(
#)),
+'(
log'(
x),
1(
#)),
#)
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
- :: #:1 → #:1 → #:1
not :: true:false → true:false
true :: true:false
false :: true:false
if :: true:false → #:1 → #:1 → #:1
ge :: #:1 → #:1 → true:false
log :: #:1 → #:1
log' :: #:1 → #:1
hole_#:11_2 :: #:1
hole_true:false2_2 :: true:false
gen_#:13_2 :: Nat → #:1
Lemmas:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
The following defined symbols remain to be analysed:
-, ge, log'
They will be analysed ascendingly in the following order:
ge < log'
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_#:13_2(
n105625_2),
gen_#:13_2(
n105625_2)) →
gen_#:13_2(
0), rt ∈ Ω(1 + n105625
2)
Induction Base:
-(gen_#:13_2(0), gen_#:13_2(0)) →RΩ(1)
#
Induction Step:
-(gen_#:13_2(+(n105625_2, 1)), gen_#:13_2(+(n105625_2, 1))) →RΩ(1)
0(-(gen_#:13_2(n105625_2), gen_#:13_2(n105625_2))) →IH
0(gen_#:13_2(0)) →RΩ(1)
#
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
0(
#) →
#+'(
#,
x) →
x+'(
x,
#) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
-(
#,
x) →
#-(
x,
#) →
x-(
0(
x),
0(
y)) →
0(
-(
x,
y))
-(
0(
x),
1(
y)) →
1(
-(
-(
x,
y),
1(
#)))
-(
1(
x),
0(
y)) →
1(
-(
x,
y))
-(
1(
x),
1(
y)) →
0(
-(
x,
y))
not(
true) →
falsenot(
false) →
trueif(
true,
x,
y) →
xif(
false,
x,
y) →
yge(
0(
x),
0(
y)) →
ge(
x,
y)
ge(
0(
x),
1(
y)) →
not(
ge(
y,
x))
ge(
1(
x),
0(
y)) →
ge(
x,
y)
ge(
1(
x),
1(
y)) →
ge(
x,
y)
ge(
x,
#) →
truege(
#,
0(
x)) →
ge(
#,
x)
ge(
#,
1(
x)) →
falselog(
x) →
-(
log'(
x),
1(
#))
log'(
#) →
#log'(
1(
x)) →
+'(
log'(
x),
1(
#))
log'(
0(
x)) →
if(
ge(
x,
1(
#)),
+'(
log'(
x),
1(
#)),
#)
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
- :: #:1 → #:1 → #:1
not :: true:false → true:false
true :: true:false
false :: true:false
if :: true:false → #:1 → #:1 → #:1
ge :: #:1 → #:1 → true:false
log :: #:1 → #:1
log' :: #:1 → #:1
hole_#:11_2 :: #:1
hole_true:false2_2 :: true:false
gen_#:13_2 :: Nat → #:1
Lemmas:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
-(gen_#:13_2(n105625_2), gen_#:13_2(n105625_2)) → gen_#:13_2(0), rt ∈ Ω(1 + n1056252)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
The following defined symbols remain to be analysed:
ge, log'
They will be analysed ascendingly in the following order:
ge < log'
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ge(
gen_#:13_2(
n107664_2),
gen_#:13_2(
n107664_2)) →
true, rt ∈ Ω(1 + n107664
2)
Induction Base:
ge(gen_#:13_2(0), gen_#:13_2(0)) →RΩ(1)
true
Induction Step:
ge(gen_#:13_2(+(n107664_2, 1)), gen_#:13_2(+(n107664_2, 1))) →RΩ(1)
ge(gen_#:13_2(n107664_2), gen_#:13_2(n107664_2)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
0(
#) →
#+'(
#,
x) →
x+'(
x,
#) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
-(
#,
x) →
#-(
x,
#) →
x-(
0(
x),
0(
y)) →
0(
-(
x,
y))
-(
0(
x),
1(
y)) →
1(
-(
-(
x,
y),
1(
#)))
-(
1(
x),
0(
y)) →
1(
-(
x,
y))
-(
1(
x),
1(
y)) →
0(
-(
x,
y))
not(
true) →
falsenot(
false) →
trueif(
true,
x,
y) →
xif(
false,
x,
y) →
yge(
0(
x),
0(
y)) →
ge(
x,
y)
ge(
0(
x),
1(
y)) →
not(
ge(
y,
x))
ge(
1(
x),
0(
y)) →
ge(
x,
y)
ge(
1(
x),
1(
y)) →
ge(
x,
y)
ge(
x,
#) →
truege(
#,
0(
x)) →
ge(
#,
x)
ge(
#,
1(
x)) →
falselog(
x) →
-(
log'(
x),
1(
#))
log'(
#) →
#log'(
1(
x)) →
+'(
log'(
x),
1(
#))
log'(
0(
x)) →
if(
ge(
x,
1(
#)),
+'(
log'(
x),
1(
#)),
#)
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
- :: #:1 → #:1 → #:1
not :: true:false → true:false
true :: true:false
false :: true:false
if :: true:false → #:1 → #:1 → #:1
ge :: #:1 → #:1 → true:false
log :: #:1 → #:1
log' :: #:1 → #:1
hole_#:11_2 :: #:1
hole_true:false2_2 :: true:false
gen_#:13_2 :: Nat → #:1
Lemmas:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
-(gen_#:13_2(n105625_2), gen_#:13_2(n105625_2)) → gen_#:13_2(0), rt ∈ Ω(1 + n1056252)
ge(gen_#:13_2(n107664_2), gen_#:13_2(n107664_2)) → true, rt ∈ Ω(1 + n1076642)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
The following defined symbols remain to be analysed:
log'
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
log'(
gen_#:13_2(
+(
1,
n111281_2))) →
*4_2, rt ∈ Ω(n111281
2)
Induction Base:
log'(gen_#:13_2(+(1, 0)))
Induction Step:
log'(gen_#:13_2(+(1, +(n111281_2, 1)))) →RΩ(1)
+'(log'(gen_#:13_2(+(1, n111281_2))), 1(#)) →IH
+'(*4_2, 1(#))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
TRS:
Rules:
0(
#) →
#+'(
#,
x) →
x+'(
x,
#) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
-(
#,
x) →
#-(
x,
#) →
x-(
0(
x),
0(
y)) →
0(
-(
x,
y))
-(
0(
x),
1(
y)) →
1(
-(
-(
x,
y),
1(
#)))
-(
1(
x),
0(
y)) →
1(
-(
x,
y))
-(
1(
x),
1(
y)) →
0(
-(
x,
y))
not(
true) →
falsenot(
false) →
trueif(
true,
x,
y) →
xif(
false,
x,
y) →
yge(
0(
x),
0(
y)) →
ge(
x,
y)
ge(
0(
x),
1(
y)) →
not(
ge(
y,
x))
ge(
1(
x),
0(
y)) →
ge(
x,
y)
ge(
1(
x),
1(
y)) →
ge(
x,
y)
ge(
x,
#) →
truege(
#,
0(
x)) →
ge(
#,
x)
ge(
#,
1(
x)) →
falselog(
x) →
-(
log'(
x),
1(
#))
log'(
#) →
#log'(
1(
x)) →
+'(
log'(
x),
1(
#))
log'(
0(
x)) →
if(
ge(
x,
1(
#)),
+'(
log'(
x),
1(
#)),
#)
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
- :: #:1 → #:1 → #:1
not :: true:false → true:false
true :: true:false
false :: true:false
if :: true:false → #:1 → #:1 → #:1
ge :: #:1 → #:1 → true:false
log :: #:1 → #:1
log' :: #:1 → #:1
hole_#:11_2 :: #:1
hole_true:false2_2 :: true:false
gen_#:13_2 :: Nat → #:1
Lemmas:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
-(gen_#:13_2(n105625_2), gen_#:13_2(n105625_2)) → gen_#:13_2(0), rt ∈ Ω(1 + n1056252)
ge(gen_#:13_2(n107664_2), gen_#:13_2(n107664_2)) → true, rt ∈ Ω(1 + n1076642)
log'(gen_#:13_2(+(1, n111281_2))) → *4_2, rt ∈ Ω(n1112812)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
(20) BOUNDS(n^1, INF)
(21) Obligation:
TRS:
Rules:
0(
#) →
#+'(
#,
x) →
x+'(
x,
#) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
-(
#,
x) →
#-(
x,
#) →
x-(
0(
x),
0(
y)) →
0(
-(
x,
y))
-(
0(
x),
1(
y)) →
1(
-(
-(
x,
y),
1(
#)))
-(
1(
x),
0(
y)) →
1(
-(
x,
y))
-(
1(
x),
1(
y)) →
0(
-(
x,
y))
not(
true) →
falsenot(
false) →
trueif(
true,
x,
y) →
xif(
false,
x,
y) →
yge(
0(
x),
0(
y)) →
ge(
x,
y)
ge(
0(
x),
1(
y)) →
not(
ge(
y,
x))
ge(
1(
x),
0(
y)) →
ge(
x,
y)
ge(
1(
x),
1(
y)) →
ge(
x,
y)
ge(
x,
#) →
truege(
#,
0(
x)) →
ge(
#,
x)
ge(
#,
1(
x)) →
falselog(
x) →
-(
log'(
x),
1(
#))
log'(
#) →
#log'(
1(
x)) →
+'(
log'(
x),
1(
#))
log'(
0(
x)) →
if(
ge(
x,
1(
#)),
+'(
log'(
x),
1(
#)),
#)
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
- :: #:1 → #:1 → #:1
not :: true:false → true:false
true :: true:false
false :: true:false
if :: true:false → #:1 → #:1 → #:1
ge :: #:1 → #:1 → true:false
log :: #:1 → #:1
log' :: #:1 → #:1
hole_#:11_2 :: #:1
hole_true:false2_2 :: true:false
gen_#:13_2 :: Nat → #:1
Lemmas:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
-(gen_#:13_2(n105625_2), gen_#:13_2(n105625_2)) → gen_#:13_2(0), rt ∈ Ω(1 + n1056252)
ge(gen_#:13_2(n107664_2), gen_#:13_2(n107664_2)) → true, rt ∈ Ω(1 + n1076642)
log'(gen_#:13_2(+(1, n111281_2))) → *4_2, rt ∈ Ω(n1112812)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
(23) BOUNDS(n^1, INF)
(24) Obligation:
TRS:
Rules:
0(
#) →
#+'(
#,
x) →
x+'(
x,
#) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
-(
#,
x) →
#-(
x,
#) →
x-(
0(
x),
0(
y)) →
0(
-(
x,
y))
-(
0(
x),
1(
y)) →
1(
-(
-(
x,
y),
1(
#)))
-(
1(
x),
0(
y)) →
1(
-(
x,
y))
-(
1(
x),
1(
y)) →
0(
-(
x,
y))
not(
true) →
falsenot(
false) →
trueif(
true,
x,
y) →
xif(
false,
x,
y) →
yge(
0(
x),
0(
y)) →
ge(
x,
y)
ge(
0(
x),
1(
y)) →
not(
ge(
y,
x))
ge(
1(
x),
0(
y)) →
ge(
x,
y)
ge(
1(
x),
1(
y)) →
ge(
x,
y)
ge(
x,
#) →
truege(
#,
0(
x)) →
ge(
#,
x)
ge(
#,
1(
x)) →
falselog(
x) →
-(
log'(
x),
1(
#))
log'(
#) →
#log'(
1(
x)) →
+'(
log'(
x),
1(
#))
log'(
0(
x)) →
if(
ge(
x,
1(
#)),
+'(
log'(
x),
1(
#)),
#)
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
- :: #:1 → #:1 → #:1
not :: true:false → true:false
true :: true:false
false :: true:false
if :: true:false → #:1 → #:1 → #:1
ge :: #:1 → #:1 → true:false
log :: #:1 → #:1
log' :: #:1 → #:1
hole_#:11_2 :: #:1
hole_true:false2_2 :: true:false
gen_#:13_2 :: Nat → #:1
Lemmas:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
-(gen_#:13_2(n105625_2), gen_#:13_2(n105625_2)) → gen_#:13_2(0), rt ∈ Ω(1 + n1056252)
ge(gen_#:13_2(n107664_2), gen_#:13_2(n107664_2)) → true, rt ∈ Ω(1 + n1076642)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
(26) BOUNDS(n^1, INF)
(27) Obligation:
TRS:
Rules:
0(
#) →
#+'(
#,
x) →
x+'(
x,
#) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
-(
#,
x) →
#-(
x,
#) →
x-(
0(
x),
0(
y)) →
0(
-(
x,
y))
-(
0(
x),
1(
y)) →
1(
-(
-(
x,
y),
1(
#)))
-(
1(
x),
0(
y)) →
1(
-(
x,
y))
-(
1(
x),
1(
y)) →
0(
-(
x,
y))
not(
true) →
falsenot(
false) →
trueif(
true,
x,
y) →
xif(
false,
x,
y) →
yge(
0(
x),
0(
y)) →
ge(
x,
y)
ge(
0(
x),
1(
y)) →
not(
ge(
y,
x))
ge(
1(
x),
0(
y)) →
ge(
x,
y)
ge(
1(
x),
1(
y)) →
ge(
x,
y)
ge(
x,
#) →
truege(
#,
0(
x)) →
ge(
#,
x)
ge(
#,
1(
x)) →
falselog(
x) →
-(
log'(
x),
1(
#))
log'(
#) →
#log'(
1(
x)) →
+'(
log'(
x),
1(
#))
log'(
0(
x)) →
if(
ge(
x,
1(
#)),
+'(
log'(
x),
1(
#)),
#)
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
- :: #:1 → #:1 → #:1
not :: true:false → true:false
true :: true:false
false :: true:false
if :: true:false → #:1 → #:1 → #:1
ge :: #:1 → #:1 → true:false
log :: #:1 → #:1
log' :: #:1 → #:1
hole_#:11_2 :: #:1
hole_true:false2_2 :: true:false
gen_#:13_2 :: Nat → #:1
Lemmas:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
-(gen_#:13_2(n105625_2), gen_#:13_2(n105625_2)) → gen_#:13_2(0), rt ∈ Ω(1 + n1056252)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
No more defined symbols left to analyse.
(28) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
(29) BOUNDS(n^1, INF)
(30) Obligation:
TRS:
Rules:
0(
#) →
#+'(
#,
x) →
x+'(
x,
#) →
x+'(
0(
x),
0(
y)) →
0(
+'(
x,
y))
+'(
0(
x),
1(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
0(
y)) →
1(
+'(
x,
y))
+'(
1(
x),
1(
y)) →
0(
+'(
+'(
x,
y),
1(
#)))
+'(
+'(
x,
y),
z) →
+'(
x,
+'(
y,
z))
-(
#,
x) →
#-(
x,
#) →
x-(
0(
x),
0(
y)) →
0(
-(
x,
y))
-(
0(
x),
1(
y)) →
1(
-(
-(
x,
y),
1(
#)))
-(
1(
x),
0(
y)) →
1(
-(
x,
y))
-(
1(
x),
1(
y)) →
0(
-(
x,
y))
not(
true) →
falsenot(
false) →
trueif(
true,
x,
y) →
xif(
false,
x,
y) →
yge(
0(
x),
0(
y)) →
ge(
x,
y)
ge(
0(
x),
1(
y)) →
not(
ge(
y,
x))
ge(
1(
x),
0(
y)) →
ge(
x,
y)
ge(
1(
x),
1(
y)) →
ge(
x,
y)
ge(
x,
#) →
truege(
#,
0(
x)) →
ge(
#,
x)
ge(
#,
1(
x)) →
falselog(
x) →
-(
log'(
x),
1(
#))
log'(
#) →
#log'(
1(
x)) →
+'(
log'(
x),
1(
#))
log'(
0(
x)) →
if(
ge(
x,
1(
#)),
+'(
log'(
x),
1(
#)),
#)
Types:
0 :: #:1 → #:1
# :: #:1
+' :: #:1 → #:1 → #:1
1 :: #:1 → #:1
- :: #:1 → #:1 → #:1
not :: true:false → true:false
true :: true:false
false :: true:false
if :: true:false → #:1 → #:1 → #:1
ge :: #:1 → #:1 → true:false
log :: #:1 → #:1
log' :: #:1 → #:1
hole_#:11_2 :: #:1
hole_true:false2_2 :: true:false
gen_#:13_2 :: Nat → #:1
Lemmas:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
Generator Equations:
gen_#:13_2(0) ⇔ #
gen_#:13_2(+(x, 1)) ⇔ 1(gen_#:13_2(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_#:13_2(n5_2), gen_#:13_2(n5_2)) → *4_2, rt ∈ Ω(n52)
(32) BOUNDS(n^1, INF)